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14.1 INTRODUCTION

Most decisions in life are gambles. Should I speed up or slow down as I approach the
yellow traffic light ahead? Should I invest in the stock market or in treasury bills? Should
I undergo surgery or radiation therapy to treat my tumor? From mundane choices rendered
with scarcely a moment’s reflection to urgent decisions founded on careful deliberation,
we seldom know in advance and with certainty what the consequences of our choices will
be. Thus, most decisions require not only an assessment of the attractiveness of potential
consequences, but also some appraisal of their likelihood of occurrence.

Virtually all decision theorists agree that values and beliefs jointly influence willingness
to act under uncertainty. However, there is considerable disagreement about how to measure
values and beliefs, and how to model their influence on decisions. Our purpose in this chapter
is to bring into sharper focus the role of values and beliefs in decision under uncertainty and
contrast some recent developments in the descriptive modeling of choice under uncertainty
with the classical normative model.

14.1.1 The Classical Theory and the Sure-Thing Principle

The primitives of most decision theories are acts, states, and consequences (Savage, 1954;
for an alternative approach, see Luce, 2000). An act is an action or option that yields one
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Table 14.1 A decision matrix. Columns are interpreted as
states of the world, and rows are interpreted as acts; each
cell entry x;; is the consequence of act i if state j obtains

States
S coe Sj coe Sn
A a X11 X1/‘ X1n
T ai Xi1 x;j Xin
S
am Xmt N xmj N Xmn

of a set of possible consequences depending on which future state of the world obtains.
For instance, suppose I am considering whether or not to carry an umbrella. Two possible
acts are available to me: carry an umbrella, or do not carry an umbrella. Two relevant states
of the world are possible: rain or no rain. The consequence of the act that I choose is a
function of both the act chosen (which governs whether or not I am burdened by carrying
an umbrella) and the state that obtains (which influences whether or not I will get wet).

More formally, let S be the set of possible states of the world, subsets of which are called
events. It is assumed that exactly one state obtains, which is unknown to the decision maker.
Let X be a set of possible consequences (also called “outcomes”), such as dollars gained
or lost relative to the status quo. Let A be the set of possible acts, which are interpreted as
functions, mapping states to consequences. Thus, for act a; € A, state s; € S, and conse-
quence x;; € X, we have a;(s;) = x;;. This scheme can be neatly captured by a decision
matrix, as depicted in Table 14.1.

In the classical normative model of decision under uncertainty, decision makers weight the
perceived attractiveness (utility) of each potential consequence by its perceived likelihood
(subjective probability). Formally, if u(x;;) is the utility of outcome x;; and p(s;) is the
subjective probability that state s; will obtain, then the decision maker chooses the act that
maximizes subjective expected utility (SEU):

n

SEU(a;) = Y u(x; )p(s,))- (D)

J=1

Hence, the classical model segregates belief (probability) from value (utility). Subjective
expected utility theory (Savage, 1954) articulates a set of axioms that are necessary and
sufficient for the representation above, allowing subjective probability and utility to be
measured simultaneously from observed preferences.! For instance, if Alan is indifferent
between receiving $100 if it rains tomorrow (and nothing otherwise) or $100 if a fair coin
lands heads (and nothing otherwise), then we infer that he considers these target events to be
equally likely (that is, p(rain) = p(heads) = 1/5). If he is indifferent between receiving one of
these prospects or $35 for sure, we infer that u(35) = 1, u(100). It is important to emphasize
that Savage, following the tradition of previous theorists (e.g., Borel, 1924; Ramsey, 1931;

! For alternative axiomatic approaches that more explicitly distinguish the role of objective versus subjective probabilities, see
Anscombe and Aumann (1963) and Pratt, Raiffa and Schlaifer (1964).
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Figure 14.1 A concave utility function for dollars gained set to u(0) = 0

de Finetti, 1937), rejected direct judgments of likelihood in favor of a measure derived from
observed preferences. In contrast, psychologists (e.g., Kahneman, Slovic & Tversky, 1982)
give credence to direct expressions of belief and assume that they can be used to predict
willingness to act under uncertainty.”

Expected utility theory was originally developed to explain attitudes toward risk. The
lay concept of “risk” entails the threat of harm or loss. For instance, managers see risk as
increasing with the likelihood and magnitude of potential losses (e.g., March & Shapira,
1987). Decision theorists, in contrast, see risk as increasing with variance in the probability
distribution of possible outcomes, regardless of whether or not a potential loss is involved.
For instance, a prospect that offers a .5 chance of receiving $100 and a .5 chance of re-
ceiving nothing is more risky than a prospect that offers $50 for sure—even though the
“risky” prospect entails no possibility of losing money. Risk aversion is defined by decision
theorists as a preference for a sure outcome over a chance prospect with equal or greater
expected value.®> Thus, the preference of $50 for sure over a 50-50 chance of receiving
$100 or nothing is an expression of risk aversion. Risk seeking, in contrast, is defined as a
preference for a chance prospect over a sure outcome of equal or greater expected value. It
is commonly assumed that people are risk averse, and this is explained in expected utility
theory by a concave utility function (see Figure 14.1). Such a shape implies, for example,
that the utility gained from receiving $50 is more than half the utility gained from receiving
$100; hence, receiving $50 for sure is more attractive than a 50-50 chance of receiving
$100 or nothing.*

As stated earlier, Savage (1954) identified a set of preference conditions that are both
necessary and sufficient to represent a decision maker’s choices by the maximization of
subjective expected utility. Central to the SEU representation (Equation (1)) is an axiom
known as the “sure-thing principle” (also sometimes referred to as “weak independence”):
if two acts yield the same consequence when a particular state obtains, then preference
between acts should not depend on the particular nature of that common consequence

2 Some statisticians, philosophers, and economists have been sympathetic to the use of direct probability judgment as a primitive
for decision theories (e.g., DeGroot, 1970; Shafer, 1986; Karni & Mongin, 2000).

3 The expected value of a gamble that pays $x with probability p is given by xp. This is the mean payoff that would be realized if
the gamble were played an infinite number of times.

4 In expected utility theory, utility is a function of the decision maker’s aggregate wealth and is unique up to a positive affine
transformation (that is, utility is measured on an interval scale). To simplify (and without loss of generality), we have set the
utility of the present state of wealth, u(Wy) = 0.
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(see Savage, 1954). To illustrate, consider a game in which a coin is flipped to determine
which fruit Alan will receive with his lunch. Suppose that Alan would rather receive an
apple if a fair coin lands heads and a cantaloupe if it lands tails (a, H; ¢, T) than receive a
banana if the coin lands heads and a cantaloupe if it lands tails (b, H; ¢, T). If this is the
case, Alan should also prefer to receive an apple if the coin lands heads and dates if the coin
lands tails (a, H; d, T) to a banana if it lands heads and dates if it lands tails (b, H; d, T). In
fact, the preference ordering over these prospects should not be affected at all by the nature
of the common consequence—be it a cantaloupe, dates or a subscription to Sports lllustrated.
The sure-thing principle is necessary to establish a subjective probability measure that is
additive (that is, p(s1) + p(s2) = p(s1 U 52)).>

14.1.2 Violations of the Sure-Thing Principle

The sure-thing principle seems on the surface to be quite reasonable, if not unassailable.
In fact, Savage (1954, p. 21) wrote, “I know of no other extralogical principle governing
decisions that finds such ready acceptance.” Nevertheless, it was not long before the
descriptive validity of this axiom was called into question. Notably, two “paradoxes”
emerged, due to Allais (1953) and Ellsberg (1961). These paradoxes pointed to deficiencies
of the classical theory that have since given rise to a more descriptively valid account of
decision under uncertainty.

Problem 1: The Allais Paradox

Choose between: (A) $1 million for sure; (B) a 10 percent chance of winning $5 million,
an 89 percent chance of winning $1 million, and a 1 percent chance of winning nothing.

Choose between: (C) an 11 percent chance of winning $1 million; (D) a 10 percent chance
of winning $5 million.

Problem 2: The Ellsberg Paradox

An urn contains 30 red balls, as well as 60 balls that are each either white or blue (but you
do not know how many of these balls are white and how many are blue). You are asked to
draw a ball from the urn without looking.

Choose between: (E) win $100 if the ball drawn is red (and nothing if it is white or blue);
(F) win $100 if the ball drawn is white (and nothing if it is red or blue).

Choose between: (G) win $100 if the ball drawn is either red or blue (and nothing if it is
white); (H) win $100 if the ball drawn is either white or blue (and nothing if it is red).

Maurice Allais (1953) presented a version of Problem 1 at an international colloquium on
risk that was attended by several of the most eminent economists of the day. The majority of

5 Savage’s postulates P3 and P4 establish that events can be ordered by their impact on preferences and that values of consequences
are independent of the particular events under which they obtain. In the context of P3 and P4, the sure-thing principle (Savage’s
P2) establishes that the impact of the events is additive (that is, that it can be represented by a probability measure). For an
alternative approach to the derivation of subjective probabilities that neither implies nor assumes expected utility theory, see
Machina and Schmeidler (1992).
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Table 14.2 Visual representation of the Allais
paradox. People typically prefer A over B but also
prefer D over C, in violation of the sure-thing

principle
Ticket numbers
1 2-11 12-100
A $1M $1M $1M
B 0 $5M $1M
C $1M $1M 0
D 0 $5M 0

Table 14.3 Visual representation of the Ellsberg
paradox. People typically prefer E over F but also
prefer H over G, in violation of the sure-thing

principle
60 ball
30 balls e
Red White Blue
E $100 0 0
F 0 $100 0
G $100 0 $100
H 0 $100 $100

these participants favored (A) over (B) and (D) over (C). Daniel Ellsberg (1961) presented
a version of Problem 2 as a thought experiment to many of his colleagues, including some
prominent decision theorists. Most favored (E) over (F) and (H) over (G). Both of these
patterns violate the sure-thing principle, as can be seen in Tables 14.2 and 14.3.

Table 14.2 depicts the Allais problem as a lottery with 100 consecutively numbered
tickets, where columns denote ticket numbers (states) and rows denote acts. Table entries
indicate consequences for each act if the relevant state obtains. It is easy to see from this
table that for tickets 1-11, acts C and D yield consequences that are identical to acts A and
B, respectively. It is also easy to see that for tickets 12—100, acts A and B yield a common
consequence (receive $1 million) and acts C and D yield a different common consequence
(receive nothing). Hence, the sure-thing principle requires a person to choose C over D
if and only if she chooses A over B. The modal preferences of A over B and D over C,
therefore, violate this axiom.

Table 14.3 depicts the Ellsberg problem in a similar manner. Again, it is easy to see that
the sure-thing principle requires a person to choose E over F if and only if he chooses G
over H. Hence the dominant responses of E over F and H over G violate this axiom.

It should also be apparent that the sure-thing principle is implied by expected utility
theory (see Equation (1)). To illustrate, consider the Allais problem above (see Table 14.2),
and set u(0) = 0. We get:

SEU(A) = .11u($1M) + .89u($1M)
SEU(B) = .10u($5M) + .89u($1M).
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Similarly,

SEU(C) = .11u($1M)
SEU(D) = .10u($5M).

Hence, the expected utilities of acts A and B differ from the expected utilities of acts C and
D, respectively, only by a constant amount (.89*u($1M)). The preference orderings should
therefore coincide (that is, A is preferred to B if and only if C is preferred to D). More
generally, any time two pairs of acts differ only by a common consequence x that obtains
with probability p, the expected utilities of these pairs of acts differ by a constant, p*u(x).
The preference ordering should therefore not be affected by the nature of this consequence
(the value of x) or by its perceived likelihood (the value of p). Thus, when we consider the
Ellsberg problem (see Table 14.3), we note that the preference between G and H should be
the same as the preference between E and F, respectively, because the expected utilities of
G and H differ from the expected utilities of £ and F, respectively, by a constant amount,
(p(blue)*u($100)).

The violations of the sure-thing principle discovered by Allais and Ellsberg both cast
grave doubt on the descriptive validity of the classical model. However, the psychological
intuitions underlying these violations are quite distinct. In Problem 1, people typically
explain the apparent inconsistency as a preference for certainty: the difference between a
100 percent chance and a 99 percent chance of receiving a very large prize (A versus B)
looms much larger than does the difference between an 11 percent chance and a 10 percent
chance of receiving a very large prize (C versus D). The pattern of preferences exhibited for
Problem 2, in contrast, seems to reflect a preference for known probabilities over unknown
probabilities (or, more generally, a preference for knowledge over ignorance). In this case, E
and H afford the decision maker precise probabilities, whereas F and G present the decision
maker with vague probabilities.

The Allais problem suggests that people do not weight the utility of consequences by their
respective probabilities as in the classical theory; the Ellsberg problem suggests that decision
makers prefer more precise knowledge of probabilities. Both problems draw attention to
deficiencies of the classical model in controlled environments where consequences are
contingent on games of chance, such as a lottery or a drawing from an urn. Most real-
world decisions, however, require decision makers to assess the probabilities of potential
consequences themselves, with some degree of imprecision or vagueness. An important
challenge to behavioral decision theorists over the past few decades has been to develop
a more descriptively valid account of decision making that applies not only to games of
chance but also to natural events, such as tomorrow’s weather or the outcome of an election.

Our purpose in this chapter is to review a descriptive model of decision making under
uncertainty. For simplicity, we will confine most of our discussion to acts entailing a sin-
gle positive consequence (for example, receive $100 if the home team wins and nothing
otherwise). In Section 2, we take the Allais paradox as a point of departure and develop
a psychological model of risky decision making that accommodates the preference for
certainty. We extend these insights from situations where probabilities are provided to sit-
uations where decision makers must judge probabilities for themselves, and we develop a
model that incorporates recent behavioral research on likelihood judgment. In Section 3,
we take the Ellsberg paradox as a point of departure and describe a theoretical perspec-
tive that accommodates the preference for known probabilities. We extend this analysis to
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situations where consequences depend on natural events, and then modify the model devel-
oped in Section 2 to accommodate these new insights. Finally, in Section 4, we bring these
strands together into a more unified account that distinguishes the role of beliefs, values
and preferences in decision under uncertainty.

14.2 THE PREFERENCE FOR CERTAINTY: FROM ALLAIS
TO THE TWO-STAGE MODEL

As we have observed, the Allais paradox violates the classical model of decision under
uncertainty that weights utilities of consequences by their respective probabilities of oc-
currence. Moreover, numerous studies have shown that people often violate the principle
of risk aversion that underlies much economic analysis. Table 14.4 illustrates a common
pattern of risk aversion and risk seeking exhibited by participants in the studies of Tversky
and Kahneman (1992). Let C(x, p) be the “certainty equivalent” of the prospect (x, p) that
offers to pay $x with probability p (that is, the sure payment that is deemed equally attractive
to the prospect). The upper left-hand entry in the table shows that the median participant
is indifferent between receiving $14 for sure and a 5 percent chance of receiving $100.
Because the expected value of the prospect is only $5, this observation reflects risk seeking.

Table 14.4 reveals a fourfold pattern of risk attitudes: risk seeking for low-probability
gains and high-probability losses, coupled with risk aversion for high-probability gains and
low-probability losses. Choices consistent with this pattern have been observed in several
studies (e.g., Fishburn & Kochenberger, 1979; Kahneman & Tversky, 1979; Hershey &
Schoemaker, 1980; Payne, Laughhunn & Crum, 1981). Risk seeking for low-probability
gains may contribute to the attraction of gambling, whereas risk aversion for low-probability
losses may contribute to the attraction of insurance. Risk aversion for high-probability gains
may contribute to the preference for certainty in the Allais problem above (option A over
option B), whereas risk seeking for high-probability losses is consistent with the common
tendency to undertake risk to avoid facing a sure loss.

Table 14.4 The fourfold pattern of risk attitudes (adapted from
Tversky & Kahneman, 1992). C(x, p) is the median certainty
equivalent of the prospect that pays $x with probability p

Gain Loss

Low probability C($100, .05) = $14 C(-$100, .05) = -$8

risk seeking risk aversion
High probability C($100, .95) = $78 C(-$100, .95) = -$84
risk aversion risk seeking

14.2.1 Prospect Theory’s Weighting Function

The Allais paradox (Problem 1) cannot be explained by the shape of the utility function for
money because options A and B differ from options C and D by a common consequence.
Likewise, the fourfold pattern of risk attitudes (Table 14.4) cannot be explained by a utility
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function with both concave and convex regions (Friedman & Savage, 1948; Markowitz,
1952) because this pattern is observed over a wide range of payoffs (that is, a wide range of
utilities). Instead, these patterns suggest a nonlinear transformation of the probability scale
(cf. Preston & Baratta, 1948; Edwards, 1962), as advanced in prospect theory (Kahneman &
Tversky, 1979; Tversky & Kahneman, 1992; other models with nonadditive probabilities
include Quiggin, 1982; Gilboa, 1987; Schmeidler, 1989; Luce & Fishburn, 1992). According
to prospect theory, the value V of a simple prospect that pays $x with probability p (and
pays nothing with probability 1 — p) is given by:

V(x, p) = v(x)w(p), ()

where v measures the subjective value of the consequence x, and w measures the impact
of probability p on the attractiveness of the prospect. The value function, v, is a function
of gains and losses relative to some reference point (usually the status quo), with v(0) = 0.
The values of w are called decision weights; they are normalized so that w(0) = 0 and
w(1l) = 1. We pause to emphasize that w need not be interpreted as a measure of degree
of belief—a person may believe that the probability of a fair coin landing heads is one-half
but afford this event a weight of less than one-half in the evaluation of a prospect.

How might one measure the decision weight, w(p)? The simplest method is to elicit a
person’s certainty equivalent for a prospect that pays a fixed prize with probability p. For
instance, suppose that Ann indicates that she is indifferent between receiving $35 for sure,
or receiving $100 if a fair coin lands heads (and nothing if it lands tails). According to
prospect theory (Equation (2)):

v(35) = v(100)w(.5)
so that
w(.5) = v(35)/v(100).

Now, to simplify our analysis, let us suppose that Ann’s value function is linear,® so that
v(x) = x. In this case:

w(.5) = .35.

Hence, in this example, a .5 probability receives a weight of .35 in the evaluation of the
prospect, and Ann’s risk aversion would be attributed not to the shape of the value function
(as in expected utility theory—see Figure 14.1), but rather to the underweighting of a .5
probability.

According to prospect theory, the shapes of both the value function v(.) and weighting
function w(.) reflect psychophysics of diminishing sensitivity: marginal impact diminishes
with distance from the reference point. For monetary outcomes, the status quo generally
serves as the reference point distinguishing losses from gains, so that the function is concave
for gains and convex for losses (see Figure 14.2a). Concavity for gains contributes to risk
aversion for gains (as we saw in the analysis of the concave utility function in Figure 14.1),
and convexity for losses contributes to risk seeking for losses. The prospect theory value

© A more typical individual, as we shall see, can be characterized instead by a concave value function for gains; for example,
v(z) = x*, 0 < o < 1. For relatively small dollar amounts such as those presented in this example, however, v(x) = x is a
reasonable first-order approximation, so that risk attitudes are driven primarily by the weighting of probabilities. However, the
studies reviewed later in this chapter do not rely on such a simplifying assumption.
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losses gains

Figure 14.2a Value function, v, for monetary gains and losses

[
\

0 1

p

Figure 14.2b Weighting function, w, for chance events that obtain with probability p

function is also steeper for losses than gains. This gives rise to risk aversion for mixed (gain-
loss) gambles, so that, for example, people typically reject a gamble that offers a .5 chance
of gaining $100 and a .5 chance of losing $100. As noted earlier, we will confine most of
the analysis in this chapter to potential gains, so we will postpone a further discussion of
losses until the conclusion.

For probability, there are two natural reference points: impossibility and certainty. Hence,
diminishing sensitivity implies an inverse-S shaped weighting function that is concave near
zero and convex near one, as depicted in Figure 14.2b. It explains the fourfold pattern
of risk attitudes (Table 14.4), because low probabilities are overweighted (leading to risk
seeking for gains and risk aversion for losses), and high probabilities are underweighted
(leading to risk aversion for gains and risk seeking for losses).” It also accounts for the Allais
paradox (Problem 1), because w(1) — w(.99) >> w(.11) — w(.10). That is, increasing the
probability of winning a large prize from .99 to 1 has more impact on the decision maker
than increasing the probability of winning from .10 to .11. This inverse-S shaped weighting
function seems to be consistent with a range of empirical findings (see Camerer & Ho, 1994;
Wu & Gonzalez, 1996, 1998; Abdellaoui, 2000; Wakker, 2000; for parameterization of the
weighting function, see Prelec, 1998; Gonzalez & Wu, 1999; for applications to decision
analysis, see Bleichrodt & Pinto, 2000; Bleichrodt, Pinto & Wakker, 2001).

7 As we stated in the previous paragraph, a value function that is concave for gains and convex for losses implies risk aversion
for gains and risk seeking for losses. This pattern is reinforced by a weighting function that underweights moderate to large
probabilities, but it is reversed by a weighting function that overweights low probabilities.
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14.2.2 From Risk to Uncertainty: Measuring Diminished Sensitivity

The inverse-S shaped weighting function provides a parsimonious account of decision
making in situations where outcome probabilities are known with precision by the decision
maker. However, most decisions (as we have already observed) require the decision maker
to assess probabilities herself, with some degree of imprecision or vagueness. Following
Knight (1921), theorists distinguish between decisions under risk, where probabilities are
known, and decisions under uncertainty, where probabilities are not known. The question
arises of how to extend the analysis of decision weights from risk to uncertainty, because
under uncertainty we can no longer describe decision weights as a transformation of the
probability scale.

One approach to solving this problem is to formalize the notion of diminishing sensitivity
for risk, and then extend this definition to uncertainty. Diminishing sensitivity means that
the weight of an event decreases with distance from the natural boundaries of zero and one.
Let p, g and r be numbers such that 0 < p, g, r < 1, p + g + r < 1. Diminishing sensitivity
near zero can be expressed as:

w(p) — w(0) > w(p + ¢) — w(q) > w(p + ¢+ r) — w(q + r), and so forth.

That is, adding probability p to an impossibility of winning a prize has a greater impact than
adding p to some intermediate probability g, and this, in turn, has a greater impact than adding
p to some larger probability g + r, and so forth. In general, this “diminishing” sensitivity
is most pronounced near the boundaries (that is, the pattern expressed by the leftmost
inequality above is more robust than the pattern expressed by subsequent inequalities).
Hence, we will focus our attention on the “diminished” sensitivity to intermediate changes
in outcome probabilities near zero. Noting that w(0) = 0, diminished sensitivity near zero
can be expressed as:

w(p) = w(p + q) — w(gQ). (3a)
Similarly, noting that w(1) = 1, diminished sensitivity near one can be expressed as:
I—wd—p)=wl—-q) —wl—-q-p). (3b)

To illustrate, suppose p = g = .1. The lower left-hand corner of Figure 14.3 illustrates “lower
subadditivity”. The impact of .1 is greater when added to 0 than when added to .1 (the length
of segment A is greater than the length of segment B). For instance, consider a lottery with
10 tickets so that each ticket has a .1 chance of winning a fixed prize. Most people would pay
more for a ticket if they did not have one (improving the probability of winning from O to .1)
than they would pay for a second ticket if they already had one (improving the probability
of winning from .1 to .2). The upper right-hand corner in Figure 14.3 illustrates “upper
subadditivity”. The impact of .1 is greater when subtracted from 1 than when subtracted
from .9 (the length of segment C is greater than the length of segment D). For instance,
most people would pay more for the tenth ticket if they already had nine (improving the
probability of winning from .9 to 1) than they would pay for a ninth ticket if they already
had eight (improving the probability of winning from .8 to .9).°

This pattern of diminished sensitivity can be readily extended from risk to uncertainty.
Again, let S be a set whose elements are interpreted as states of the world. Subsets of S are

8 Such a pattern could be accommodated in expected utility theory only through a convex utility function for money.
9 For an empirical demonstration similar to the lottery anecdote used here, see Gonzalez and Wu (1999).
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called “events”. Thus, S corresponds to the certain event, @ is the null event (that is, the
impossible event), and S — A is the complement of event A. A weighting function W (on )
is a mapping that assigns to each event in S a number between 0 and 1 such that W(@) = 0,
W(S) =1, and W(A) > W(B) if A includes B. Note that the weighting function for uncertain
events, W, should be distinguished from the weighting function for risky (chance) events,
w. Thus, for uncertainty, we can rewrite Equation (2) so that the value of prospect (x, A)
that offers $x if event A obtains and nothing otherwise is given by:

V(z, A) = v(x) W(A).
Equation (3a) can now be generalized as lower subadditivity:
W(A) > W(AUB) — W(B), (4a)

provided A and B are disjoint (that is, mutually exclusive), and W(A U B) is bounded away
from one.'? This inequality is a formal expression of the possibility effect: the impact of
event A is greater when it is added to the null event than when it is added to some non-null
event B. Equation (3b) can be generalized as upper subadditivity:

1-W(ES —A4)= WS —-B)— W(S—-AUDB), (4b)

provided W(S — A U B) is bounded away from zero. Upper subadditivity!' is a formal
expression of the certainty effect: the impact of event A is greater when it is subtracted
from the certain event S than when it is subtracted from some uncertain event S — B.
Note that upper subadditivity can be expressed as lower subadditivity of the dual func-
tion, W(A) = 1 — W(S — A). That is, upper subadditivity is the same as lower subaddi-
tivity where we transform both scales by subtracting events from certainty and decision
weights from one (reversing both axes, as can be seen by viewing Figure 14.3 upside
down).

Why the terms “lower subadditivity” and “upper subadditivity”? “Lower” and “upper”
distinguish diminished sensitivity near zero (the lower end of the scale) from diminished
sensitivity near one (the upper end of the scale), respectively. “Subadditivity” refers to the
implication revealed when we rearrange terms of Equations (4a) and (4b):

W(AUB) < WA + W(B) U]
and
W' (AU B) < W'(A)+ W/(B). (i7)

Thus, when disjoint events are concatenated (added together) they receive less weight
than when they are weighted separately and summed—W is a sub-additive function of
events. The weighting function satisfies bounded subadditivity, or subadditivity (SA) for
short, if it satisfies both (4a) and (4b).!?

10 The boundary conditions are needed to ensure that we always compare an interval that includes an endpoint (zero or one) to an
interval that does not include an endpoint. See Tversky and Wakker (1995) for a more formal discussion.

' Note that if we define B’ = S—A U B, then upper subadditivity can be expressed as 1—W(S — A) > W(A U B') — W(B'). Upper
subadditivity has been previously presented in this form (Tversky & Fox, 1995; Tversky & Wakker, 1995; Fox & Tversky,
1998).

12 For a more formal treatment of bounded subadditivity, see Tversky and Wakker (1995). For a more thorough account of
diminishing sensitivity under risk that explores concavity near zero, convexity near one and diminishing marginal concavity
throughout the scale, see Wu and Gonzalez (1996); for extensions to uncertainty, see Wu and Gonzalez (1999b).
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Figure 14.3 Visual illustration of bounded subadditivity. The lower left-hand corner of the
figure illustrates lower subadditivity. The upper right-hand corner illustrates upper subadditivity
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Figure 14.4 An event space for prospects defined by the result of a soccer match between
Argentina and Brazil. Each row denotes a target event that defines a prospect

To illustrate bounded subadditivity more concretely, consider a soccer match between
Argentina and Brazil. We can partition the state space into three elementary events
(see Figure 14.4): Argentina wins (A), Brazil wins (B), or there is a draw (S — A U B).
Additionally, this partition defines three compound events: Argentina fails to win (S — A),
Brazil fails to win (S — B), and there is a decisive game (that is, either Argentina or Brazil
wins, A U B). Now suppose that we ask a soccer fan to price prospects that would pay
$100 if each of these target events obtains. For instance, we ask the soccer fan what sure
amount of money, C}, she finds equally attractive to the prospect ($100, A) that offers $100
if Argentina wins (and nothing otherwise). Let us suppose further, for simplicity, that this
individual values money according to a linear value function, so that v(x) = x. In this case,
W(A) = C4/100.

Suppose our soccer fan prices bets on Argentina winning, Brazil winning, and a decisive
match at $50, $40 and $80, respectively. In this case, we get W(A) = .5, W(B) = .4, and
W(AUB) = .8, so that lower subadditivity (Equation (4a)) is satisfied because .5 > .8 — 4.
Suppose further that our soccer fan prices bets on Argentina failing to win, Brazil failing
to win, and a draw at $40, $50 and $10, respectively. In this case, we get W(S — A) = .4,
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Figure 14.5 A weighting function that is linear except near the endpoints (d = “lower” inter-
cept of the weighting function; d’ = “upper” intercept of the weighting function; s = slope.
Reproduced from Tversky & Fox, 1995)

W(S — B) = .5, and W(S — A U B) = .1, so that upper subadditivity (Equation (4b)) is
satisfied because 1—.4 > .5 — .1.

We can determine the degree of subadditivity by assessing the magnitude of the discrep-
ancy between terms on either side of inequalities (i) and (ii) above:

D(A, B)= W(A)+ W(B)— W(AU B)
D'(A, B)= W'(A)+ W(B)— W'(AU B).

This metric provides a measure of the departures from additivity of the weighting function
around impossibility (D) and certainty (D'). These measures are particularly useful because
they do not require specification of objective probability. We can thus compare the degree
of subadditivity between risk and uncertainty. More generally, we can compare the degree
of subadditivity between different domains or sources of uncertainty, where a source of un-
certainty is interpreted as a family of events that are traced to a common causal system, such
as the roll of a die, the winner of an election or the final score of a particular soccer match.'?

Suppose that an experimenter measures decision weights of several events so that she
has multiple tests of upper and lower subadditivity for each individual. To obtain summary
measures of subadditivity, let d and d’, respectively, be the mean values of D and D’ for a
given respondent and source of uncertainty. To see how one might interpret the values of d
and d’, assume a weighting function that is approximately linear except near the endpoints
(see Figure 14.5). It is easy to verify that within the linear portion of the graph, D and D’
do not depend on A and B, and the values of d and d’ correspond to the 0- and 1-intercepts
of such a weighting function. Thus, d measures the magnitude of the impossibility “gap”
and d’ measures the magnitude of the certainty “gap”. Moreover, we can define a global
index of sensitivity, s = 1—d—d’ that measures the slope of the weighting function—that
is, a person’s sensitivity to changes in probability. Prospect theory assumes that d > 0, d’ >
0, and s < 1, whereas expected utility theory assumes d = d' = 0, and s = 1. An extreme
instance in which s = 0 (and also d > 0, d > 0) would characterize a three-valued logic in
which a person distinguishes only impossibility, possibility and certainty.

13 In decision under risk, we interpret uncertainty as generated by a standard random device; although probabilities could be
realized through various devices, we do not distinguish between them and instead treat risk as a single source.
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Tversky and Fox (1995) tested bounded subadditivity in a series of studies using risky
prospects (for example, receive $150 with probability .2) and uncertain prospects with
outcomes that depended on future temperature in various cities, future movement of the
stock market, and the result of upcoming sporting events (for example, “receive $150 if the
Buffalo Bills win the Super Bowl”). These authors estimated certainty equivalents by asking
participants to choose between each prospect and a series of sure payments. For example,
if a participant favored $35 for sure over a prospect that offered $150 with probability .2,
and that participant also favored the prospect over receiving $30 for sure, then the certainty
equivalent for the prospect was estimated to be $32.50 (midway between $30 and $35). The
authors then estimated decision weights as W(A) = v(C,)/v(150), where the value function
was estimated using data from another study. The results were very consistent: bounded
subadditivity was pronounced for risk and all sources of uncertainty (d > 0, d’ > 0 for a
significant majority of participants). In addition, Tversky and Fox found that subadditivity
was more pronounced for uncertainty than for risk. That is, values of d and d’ were larger
for uncertain prospects than for risky prospects.

Note that Figure 14.5, like Figures 14.2b and 14.3, is drawn so that the weighting function
crosses the identity line below .5, and d’ > d. This is meant to reflect the assumption under
prospect theory that decision weights for complementary events generally sum to less than
one, W(A) + W(S — A) < 1, or equivalently, W(A) < W(S) — W(S — A). This property,
called “subcertainty” (Kahneman & Tversky, 1979), accords with the data of Tversky and
Fox (1995) and can be interpreted as evidence of more pronounced upper subadditivity than
lower subadditivity; thatis, the certainty effect is more pronounced than the possibility effect.

Figure 14.6 summarizes results from Tversky and Fox (1995), plotting the sensitivity
measure s for risk versus uncertainty for all participants in their studies. Three patterns are
worth noting. First, s < 1 for all participants under uncertainty (mean s = .53) and for
all but two participants under risk (mean s = .74). Second, the value of s is smaller under
uncertainty than under risk for 94 of 111 participants (that is, the large majority of points
lie below the identity line). Third, there is a significant correlation between sensitivity to
risk and sensitivity to uncertainty (r = .37, p < .01).

14.2.3 The Two-Stage Model

The observation that subadditivity is more pronounced under uncertainty than risk accords
with the natural intuition that people could be less sensitive to changes in the target event
when they do not have objective probabilities at their disposal but must instead make a vague
assessment of likelihood. Fox and Tversky (1995) speculated that increased subadditivity
under uncertainty might be directly attributable to subadditivity of judged probabilities. To
test this conjecture, they asked participants in all of their studies to judge the probabilities of
all target events. These researchers found that judged probability, P(.), exhibited significant
bounded subadditivity.!* That is, if Dp and D/, measure the degree of lower and upper
subadditivity, respectively, of judged probabilities for disjoint events A and B, we get:

Dp(A, B) = P(A)+ P(B) — P(AUB) > 0

and

14 Note that we distinguish judged probability, P(.), from objective probability, p.
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Figure 14.6 A plot of the joint distribution of the sensitivity measure s for risk and uncertainty
for participants in the studies of Tversky and Fox (1995). Reproduced from Tversky and Fox
(1995)

Dp(A,B)y= P'(A)+ P'(B)— P(AUB)>0

(where P’ (A) = 1 — P(S — A)), for a significant majority of tests for all sources of uncertainty.
Interestingly, the degree of subadditivity observed for direct judgments of probability was
less than the degree of subadditivity observed for decision weights that were inferred from
choices. This observation motivated Fox and Tversky (1995) to propose a two-stage model in
which decision makers first judge the probability P of the target event A, and then transform
this judged probability by the risky weighting function w. Thus, according to the two-stage
model,

W(A) = wlP(A)]. &)

Indeed, when Fox and Tversky (1995) plotted the uncertain decision weight, W(A), for each
target event against the corresponding judged probability, P(A), these plots closely resem-
bled the plot of the risky weighting function, w(p), against objective probability p for the
same group of participants. The notion that risky decision weights are a constituent of uncer-
tain decision weights may also explain the aforementioned finding of a significant positive
correlation between sensitivity to risk and sensitivity to uncertainty (see Figure 14.6).
Further evidence for the two-stage model was obtained in a study of professional options
traders who were surveyed on the floors of the Pacific Stock Exchange and Chicago Board
Options Exchange by Fox, Rogers and Tversky (1996). Options traders are unique in that
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they are schooled in the calculus of chance and make daily decisions under uncertainty on
which their jobs depend. Unlike participants in most studies, the majority of the options
traders priced risky prospects by their expected value. This pattern is consistent with both
a linear value function and linear risky weighting function.'”> However, when participants
were asked to price uncertain prospects contingent on future stock prices (for example,
“receive $150 if Microsoft stock closes below $88 per share two weeks from today™),
their decision weights exhibited pronounced subadditivity. Furthermore, when these same
participants were asked to judge the probability of each target event, they exhibited roughly
the same degree of subadditivity as they had exhibited for decision weights. Thus, when
decision weights were plotted against judged probabilities, points fell roughly along the
identity line (that is, W(A) = P(A)). This pattern is consistent with the two-stage model, in
which options traders first judge the probability of each target event—subadditively—and
then weight the $150 prize by this judged probability.

Fox and Tversky (1998) elaborated the two-stage model (Equation (5)) and tested some
of its implications. In this theory, both the uncertain weighting function, W(.), and the
risky weighting function, w(.), are assumed to conform to prospect theory (that is, satisfy
bounded subadditivity). In addition, judged probability, P(.), is assumed to conform to
support theory (Tversky & Koehler, 1994; Rottenstreich & Tversky, 1997), a descriptive
model of judgment under uncertainty. To demonstrate how support theory accommodates
subadditivity of judged probability and to highlight its novel implications for the two-stage
model, we describe the key features of support theory in the section that follows.

Support Theory

There is abundant evidence from prior research that judged probabilities do not conform
to the laws of chance (e.g., Kahneman, Slovic & Tversky, 1982). In particular, alternative
descriptions of the same event can give rise to systematically different probability judgments
(e.g., Fischhoff, Slovic & Lichtenstein, 1978), more inclusive events are sometimes judged
to be less likely than less inclusive events (Tversky & Kahneman, 1983), and the judged
probability of an event is typically less than the sum of judged probabilities of constituent
events that are evaluated separately (e.g., Teigen, 1974). To accommodate such patterns,
support theory assumes that judged probability is not attached to events, as in other theories,
but rather to descriptions of events, called “hypotheses”. Thus, two different descriptions
of the same event may be assigned distinct probabilities. Support theory assumes that each
hypothesis A has a non-negative support value s(A) corresponding to the strength of evidence
for that hypothesis. Support is assumed to be generated through heuristic processing of
information or through explicit reasoning or computation (see also Sloman et al, 2003).
The judged probability P(A, A) that hypothesis A, rather than its complement A, obtains
is given by:

15 Fox, Rogers and Tversky (1996) claimed that this pattern of results would be observed under cumulative prospect theory if
and only if the value function and weighting function were both linear (p. 8, lines 15-18). Fox and Wakker (2000) observe
that this assertion is not technically correct given the method by which the value function was elicited in that study, but that
the conclusion is pragmatically reasonable and that the qualitative results reported in that paper are robust over a wide range
of variations in the value function. For a method of measuring the shape of the value function that does not assume additive
subjective probabilities, see Wakker and Deneffe (1996). A nonparametric algorithm for simultaneously estimating subjective
value and decision weights from certainty equivalents of risky prospects was advanced by Gonzalez and Wu (1999).
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P(A, A) = s(A)/[s(A) + s(A)]. (6)

This equation suggests that judged probability can be interpreted as the balance of evidence
for a focal hypothesis against its alternative. Hence, if the support for a hypothesis (for
example, “rain tomorrow”) and its complement (for example, “no rain tomorrow”) are
equal, the judged probability is one-half (that is, P(rain, no rain) = .5). As the support
for the focal hypothesis increases relative to support for the alternative hypothesis, judged
probability approaches one. Likewise, as support for the alternative hypothesis increases
relative to support for the focal hypothesis, judged probability approaches zero.

The theory further assumes that (i) unpacking a hypothesis A (for example, “the winner
of the next US presidential election will not be a Democrat”) into an explicit disjunction
of constituent hypotheses A; VA, (for example, “the winner of the next US presidential
election will be a Republican or an independent candidate”) generally increases support,
and (ii) separate evaluation of the constituent hypotheses (for example, “the winner of the
next US presidential election will be a Republican’; “the winner of the next US presidential
election will be an independent candidate”) generally gives rise to still higher total support.
More formally,

s(A) = 5(A1 V A) = 5(A1) + 5(A2), (7

provided (A}, A,) is recognized as a partition (that is, exclusive and exhaustive constituents)
of A.

The first set of consequences of support theory concerns the additivity of judged probabil-
ities. Equation (6) implies binary complementarity: P(A) + P(A) = 1. That is, the judged
probability of A and its complement sum to unity.'® For instance, the judged probability that
the winner of the next election will be a “Democrat” plus the judged probability that the
winner of the next election will “not be a Democrat” should sum to one. For finer partitions,
however, Equations (6) and (7) imply subadditivity: P(A) < P(A;) + P(A;). That is, the
probability of hypothesis A is less than or equal to the sum of probabilities of its disjoint
components (note that this also implies that the judged probabilities of n > 2 exhaustive
and exclusive hypotheses generally sum to more than one). For instance, the judged prob-
ability that the winner of the next election will “not be a Democrat” is less than or equal
to the judged probability of “Republican” plus the judged probability of “an independent
candidate”. Such patterns have been confirmed in several studies reviewed by Tversky and
Koehler (1994). Subadditivity and binary complementarity have also been documented in
studies of physicians (Redelmeier et al., 1995), lawyers (Fox & Birke, 2002) and options
traders (Fox, Rogers & Tversky, 1996); and subadditivity has been observed in published
odds of bookmakers (Ayton, 1997). A within-subject test that traces the relationship be-
tween raw expression of support and judged probabilities is reported by Fox (1999; see also
Koehler, 1996). For a demonstration of subadditivity in a classification learning task, see
Koehler (2000). For exceptions to binary complementarity, see Brenner and Rottenstreich
(1999), Macchi, Osherson and Krantz (1999) and Idson et al. (2001).

16 In the studies that we will review here, participants are asked to evaluate a target hypothesis A (for example, judge the probability
that “the Lakers win the NBA championship”), so that the alternative hypothesis is not explicitly identified (that is, participants
are not asked to judge the probability that “the Lakers win rather than fail to win the NBA championship”). However, we assume
that when evaluating the likelihood of a target event A, decision makers consider its simple negation A as the default alternative
hypothesis. Moreover, to simplify our exposition, we abbreviate the expression P(A, A) in our notation as P(A), taking the
negation of the focal hypotheses, A, as implicit. Also, to simplify we use letters A, B, etc., henceforth to refer to hypotheses
(that is, descriptions of events) rather than subsets of a state space.
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A second important consequence of support theory is implicit subadditivity: P(A) <
P(A; Vv Aj). That is, the judged probability of a hypothesis generally increases when un-
packed into an explicit disjunction of constituent hypotheses. For instance, the judged
probability that the winner of the next election will “not be a Democrat” is less than or
equal to the judged probability that the winner will be a “Republican or independent candi-
date”. This pattern has been demonstrated empirically by Rottenstreich and Tversky (1997)
and replicated by others (Redelmeier et al., 1995; Fox & Tversky, 1998; Fox & Birke, 2002;
for counterexamples, see Sloman et al., 2003).

Because the two-stage model incorporates judged probabilities from support theory,
it is a significant departure from other models of decision under uncertainty in two re-
spects. First, subadditivity of the uncertain weighting function, W(.), is partially attributed
to subadditivity of judged probability. Traditional economic models of decision under un-
certainty infer decision weights from observed choices and therefore cannot distinguish
between belief and preference components of decision weights. Second, W(.) allows differ-
ent decision weights for distinct descriptions of a target event: W(A) < W(A; V A;). Thus,
different descriptions of options can give rise to different preferences, in violation of the
normative assumption of description invariance (see Tversky & Kahneman, 1986; Tversky,
1996).

The Partition Inequality

One of the most striking differences between the classical model of decision under un-
certainty and the two-stage model can be observed directly from certainty equivalents for
uncertain prospects. Suppose (A, Ay, ..., A,) is recognized as a partition of hypothesis
A, and that C(x, A) is the certainty equivalent of the prospect that pays $x if hypothesis A
obtains, and nothing otherwise. Expected utility theory assumes that the certainty equivalent
of an uncertain prospect is not affected by the particular way in which the target event is
described, so that:

Cx,A) = C(x, AV ...VA,) (i)

for all real x, n > 1. For instance, a person’s certainty equivalent for the prospect that pays
$100 if “there is measurable precipitation next April 1 in Chicago” should be the same as
the certainty equivalent for the prospect that pays $100 if “there is measurable rain or sleet
or snow or hail next April 1 in Chicago”.

Moreover, expected utility theory with risk aversion implies:

Clz, A) = Cz, A+ -+ C(z, 4y). (ii)

That is, the certainty equivalent for a prospect is at least as large as the sum of certainty
equivalents for subprospects that are evaluated separately (for a derivation, see Fox &
Tversky, 1998, p. 882, Footnote 6). To illustrate, note that for a risk-averse individual the
certainty equivalent of a prospect that pays $100 if a fair coin lands heads will be less than
its expected value of $50. Likewise, for this same individual the certainty equivalent of a
prospect that pays $100 if a fair coin lands tails will be less than $50. Hence the aggregate
price of the subprospects, evaluated separately by this risk-averse individual, will be less
than the price of the prospect that pays $100 for sure.
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Taken together, (i) and (if) above imply the following partition inequality:"’
C(x,A)=C(z,Ayv...VA) > C(x, A)+ ...+ C(z, A). 8)

If decision makers act in accordance with the two-stage model (Equation (5)), then the
partition inequality will not generally hold. In particular, situations can arise where:

C(z,A) < C(x, Ayv...VA) < C(x, A)+ ...+ C(z, A)).

The equality (i) in Equation (8) is especially likely to fail when the explicit disjunction
reminds people of possibilities that they may have overlooked or makes compelling possi-
bilities more salient. The inequality (i7) in Equation (8) is especially likely to fail when the
target event is partitioned into many pieces so that subadditivity of judged probability and
subadditivity of the risky weighting function are more pronounced than concavity of the
value function.

14.2.4 Tests of the Two-Stage Model

We now present evidence from several previous studies that test the two-stage model against
the classical model (expected utility with risk aversion). We begin with tests of the partition
inequality, and then proceed to more direct tests of the relative fit of these models.

Tests of the Partition Inequality

To date, only partial tests of the entire partition inequality (Equation (8)) have been pub-
lished. In this section, we begin by presenting evidence from previous studies for violations
of description invariance (part ({)) and risk aversion (part (ii)), and then present evidence
from new studies that simultaneously test the entire pattern in Equation (8) within-subject.

Violations of Description Invariance

There have been only a few documented tests of unpacking effects (implicit subadditiv-
ity) against the description invariance assumption of expected utility theory (part (i) of
Equation (8)). Johnson et al. (1993) reported that consumers were willing to pay more for
an insurance policy that covered hospitalization due to “any disease or accident” ($47.12)
than hospitalization for “any reason” ($41.53). Similarly, Fox and Tversky (1998) found
that participants valued the prospect offering $75 if “Chicago or New York or Indiana or
Orlando” wins the National Basketball Association (NBA) playoffs more highly than the
prospect offering $75 if an “Eastern Conference” team wins the NBA playoffs, despite the
fact that the teams listed in the former prospect were only a (proper) subset of the teams
comprising the Eastern Conference.

In a more extensive investigation, Wu and Gonzalez (1999a) observed that participants
favored “unpacked” prospects over “packed” prospects, even though the latter dominated
the former. For instance, most participants said they would rather receive a sure payment

17 This version of the partition inequality extends Equation (4) from Fox and Tversky (1998).
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Table 14.5 Subadditivity and violations of the partition inequality

Certainty equivalents  Judged probability

Study N Source of uncertainty  Atoms £C X C(A;)) > C(S) P(A)+ P(S-A) ZP
Tversky & Fox
(1995)
NBA fans 27 a. NBA playoffs 6 1.40 93% 0.99
b. San Francisco 6 1.27 77% 0.98
temperature
NFL fans 40 c. Super Bowl 6 1.31 78% 1.01 1.48
d. Dow Jones 6 1.16 65% 0.99 1.25
Stanford students 45 e. San Francisco 6 1.98 88% 1.03 16
temperature
f. Beijing temperature 6 1.75 82% 1.01 1.88
Fox et al.
(1996)
Options traders 32 g. Microsoft 4 1.53 89% 1.00 1.40
(Chicago) h. GE 4 1.50 89% 0.96 1.43
Options traders 28 i. IBM 4 1.47 82% 1.00 1.27
(SF) j- Gannett Co. 4 1.13 64% 0.99 20
Fox & Tversky
(1998)
NBA fans 50 k. NBA playoffs 8 2.08 82% 1.02 2.40
Stanford students 82 |. Economic indicators 4 1.14 41% 0.98 1.14
Median 1.44 82% 1.00 1.42

Note: Adapted from Fox and Tversky (1998, Table 8). The first three columns identify the participant population, sample
size and sources of uncertainty. The fourth column lists the number of elementary events (atoms) in the finest partition of
the state space (S) available in each study. The fifth and sixth columns present the median sum of normalized certainty
equivalents for an n-fold partition of S, and the proportion of participants who reported certainty equivalents that
summed to more than the amount of the prize. The last two columns present the median sum of judged probabilities
for binary partitions of S and an n-fold partition of S.

of $150 than a prospect that offered $240 if the Bulls win more than 65 games (and nothing
otherwise). However, when the prospect was modified so that it offered $240 if the Chicago
Bulls win between 65 and 69 games and $220 if the Bulls win more than 70 games (and noth-
ing otherwise), most participants instead favored the prospect over a sure payment of $150.
Apparently, unpacking the target prospect increased its attractiveness even though the un-
packed prospect is dominated by the packed prospect (note that the unpacked version offers
$20 less if the Bulls win more than 70 games). Wu and Gonzalez (1999a) obtained a similar
pattern of results for prospects drawn from diverse domains such as election outcomes and
future temperatures. Although, strictly speaking, Wu and Gonzalez’s demonstrations do
not entail a violation of description invariance, they do suggest that unpacking the target
event into a separate description of constituent events (each with similar consequences) can
increase the attractiveness of a prospect.

Violations of Risk Aversion

There have been a number of published studies testing (lower) subadditivity against expected
utility with risk aversion (part (if) of Equation (8)). Table 14.5 summarizes these results,
showing a pattern that consistently favors the two-stage model. First, consider certainty
equivalents. The column labeled X C presents the median sum of normalized certainty
equivalents (that is, certainty equivalents divided by the amount of the relevant prize)
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for the finest partition of S available in each study, and the column labeled £ C(4;) >
C(S) presents the corresponding percentage of participants who violated part (ii) of the
partition inequality for the finest partition of S. In accord with the two-stage model, the
majority of participants in every study violated the partition inequality, and the sum of
certainty equivalents was often substantially greater than the prize. For instance, in Fox and
Tversky’s (1998) sample of NBA fans, participants priced prospects that offered $160 if
a particular team would win the NBA playoffs (eight teams remained in contention at the
time of the study). The median participant reported certainty equivalents for the eight teams
that sum to 2.08 times the $160 prize (that is, $330). Moreover, 82 percent of respondents
violated part (ii) of the partition inequality by reporting certainty equivalents that exceed
$160.

Next, consider probability judgment. The column labeled P(A) + P(S—A) presents the
median sum of judged probabilities for binary partitions of the state space. The column
labeled X P presents the median sum of judged probabilities for the finest partition of
S. The results conform to support theory: sums for binary partitions are close to one,
whereas sums for finer partitions are consistently greater than one. For instance, in Fox and
Tversky’s (1998) study of NBA fans, the median sum of probabilities that the “Western
Conference” would win the NBA championship and the “Eastern Conference” would win
the NBA championship was 1.02. However, when these same participants separately judged
the probabilities that each of the eight teams remaining would win the NBA championship,
the median participant reported numbers that summed to 2.40.

Violations of the Partition Inequality

In a new set of studies, we (Fox & See, 2002) have documented violations of the entire
partition inequality (Equation (8)), including tests of both description invariance (part (7))
and risk aversion (part (i7)). We replicated the methods of Fox and Tversky (1998), adding
elicitation of explicit disjunctions (the middle term in Equation (8)) so that the entire pattern
predicted by support theory and the two-stage model could be tested simultaneously and
within-subject.

The data presented here are drawn from two studies. In the first study, Duke Univer-
sity undergraduates were asked to price prospects that offered $160 depending on which
team would win the Atlantic Coast Conference (ACC) men’s college basketball tourna-
ment (a topic that Duke students follow closely), and then judge probabilities of all target
events. The ACC consists of nine schools in the southeastern USA. Schools were catego-
rized according to geographic subregion (“inside North Carolina” versus “outside North
Carolina”) and funding (“private school” versus “public school”).!® In the second study,
Brown University students first learned the movement of economic indicators in a hypo-
thetical economy (interest rates and unemployment, which could each move either “up”
or “down” in a given period). Next they were asked to price prospects that offered $160
depending on the direction in which indicators would move in the following period. Fi-
nally, participants were asked to judge probabilities of all target events. Participants in

18 The results presented here from Fox and See (2002) are a subset of results from this study in which we relied on a hierarchical
partition of the state space. Participants were also asked to price prospects contingent on the final score of an upcoming game
(a dimensional partition) and prospects contingent on the conjunction of results in two upcoming games (a product partition).
The results of these latter tasks were consistent with the two-stage model, but did not yield significant implicit subadditivity in
either judgment or choice.
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Table 14.6 Mean certainty equivalents for joint events, explicit disjunction, and sums

Source of Implicit Explicit Sum
Study N uncertainty (A) (A1 vV Ay) (A1 + Ay)

Fox & See (2002)

Duke basketball 51 Basketball  P(.) 0.56 o 0.65 o 0.81
fans C() 0.53 ok 0.61 o 0.76
Brown students 29 Economic P(.) 0.52 o 0.55 * 0.68
indicators  C(.) 0.42 t 0.52 o 0.63

tp<.10; *p<.05 *p<.005.

The first three columns identify the participant population, sample size and sources of uncertainty. The fourth column
indicates the relevant dependent variable (judged probability or normalized certainty equivalent). The remaining columns
list the mean judged probabilities and normalized certainty equivalents for implicit disjunctions, explicit disjunctions and
constituent events that were evaluated separately and summed. Asterisks and dagger indicate significance of differences
between adjacent entries.

both studies were also asked to price risky prospects and complete a task that allowed us to
estimate the shape of their value function for monetary gains.

Table 14.6 presents the mean judged probabilities and normalized certainty equivalents
for participants in the studies of Fox and See (2002). The column labeled (A) presents the
mean normalized certainty equivalent and judged probability for simple events, or “implicit
disjunctions” in the language of support theory (for example, “interest rates go up”). The
column labeled (A; Vv A;) presents the mean normalized certainty equivalent and judged
probability for the same events described as explicit disjunctions (for example, “interest rates
go up and unemployment goes up, or interest rates go up and unemployment goes down”).
The column labeled (A + A,) presents the mean sum of normalized certainty equivalents and
judged probabilities for the same constituent events when assessed separately (for example,
“interest rates go up and unemployment goes up”’; “interest rates go up and unemployment
goes down”). Judged probabilities reported in Table 14.6 accord perfectly with support
theory, and certainty equivalents clearly violate both parts of the partition inequality (Equa-
tion (8)), consistent with the two-stage model.

Table 14.7 lists the proportion of participants in each of the Fox and See (2002) studies
that violate various facets of the partition inequality (Equation (8)), as well as the proportion
of participants whose judged probabilities follow an analogous pattern. The last column
displays the proportion of participants whose certainty equivalents and judged probabilities
exhibit subadditivity. Just as we saw in the studies summarized in Table 14.5 (see column 6),
a large majority of participants in the Fox and See studies violated risk aversion (part (ii) of
Equation (8)), exhibiting subadditivity of certainty equivalents. Moreover, a large majority
of participants showed an analogous pattern of subadditivity among judged probabilities.

The fourth and fifth columns of Table 14.7 display tests of the more refined predictions
of the partition inequality (Equation (8)). The results in column 4 show that a majority of
participants reported higher certainty equivalents when events were described as explicit
disjunctions (violating the first part of Equation (8)). A similar pattern appeared among
judged probabilities (satisfying “implicit subadditivity” in the language of support theory;
see Rottenstreich & Tversky, 1997). Finally, the results in column 5 show that a large
majority of participants reported higher certainty equivalents when constituent prospects
were evaluated separately and summed than when evaluating a single prospect whose target
event was described as an explicit disjunction of the same constituent events (violating
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Table 14.7 Percentage of participants violating the partition inequality

Source of Implicit < Explicit  Explicit < Sum Implicit < Sum
Study N uncertainty A<A VA AVA <A +A A<A +A

Fox & See (2002)

Duke basketball 51 Basketball P(.) 63%t 78%** 86%**

fans C(.) 65%* 84%** 94%**

Brown students 29 Economic P(.) 69%* 66%t 83%**
indicators C(.) 59% 62% 66%t

ip<.10; *p<.05 **p<.005.

The first three columns identify the participant population, sample size and sources of uncertainty. The fourth column
indicates the relevant dependent variable (judged probability or normalized certainty equivalent). The remaining
columns list the percentage of participants who violate the designated facet of the partition inequality (for certainty
equivalents) and satisfy the designated prediction of support theory (for judged probability); asterisks and dagger indicate
the statistical significance of the percentage.

the second part of Equation (8)). A similar pattern was exhibited for judged probabilities
(satisfying “explicit subadditivity” in the language of support theory).

Fitting the Two-Stage Model

The two-stage model can be tested more directly against expected utility theory by compar-
ing the fit of both models to empirical data. To fit the two-stage model, we did the following.
For each target event, A, we observed its median judged probability P(A). We next searched
for the median certainty equivalent C of the risky prospect (x, p), where p = P(A) (recall
that these studies also asked participants to price risky prospects). Hence,

C(z, A) is estimated by C(z, p) where p = P(A).

To illustrate, consider the study of basketball fans reported by Fox and See (2002). One
of the prospects presented to these participants offered $160 if Duke won its upcoming
game against the University of North Carolina (UNC). To fit the two-stage model, we first
observed that the median judged probability of the target event was .8. Next we found
that the median certainty equivalent of this same population for the prospect that offered
$160 with probability .8 was $119. The median certainty equivalent for the prospect that
offered $160 if Duke won its game against UNC was $120. Thus, the error in this case was
$120—$119 = $1, or 0.6 percent.

To fit the classical theory, let C,4 be the certainty equivalent of the prospect ($160, A).
Setting u(0) = 0, the classical theory yields u(C4) = u(160)P(A), where u is concave and
P(A)is an additive subjective probability measure.'” Hence, P(A) = u(Cy) /u(160). Previous
studies (e.g., Tversky, 1967; Tversky & Kahneman, 1992) have suggested that the utility
function for small to moderate gains can be approximated by a power function: v(x) = x*, «
> 0. Thus, risk aversion (a concave utility function) is modeled by « < 1, risk neutrality (a
linear utility function) is modeled by « = 1, and risk seeking (a convex utility function) is
modeled by @ > 1. An independent test of risk attitudes of these same participants yielded
an estimate of ¢, assuming expected utility theory.

19 Note that the additive subjective probability measure P(.) should be distinguished from judged probability P(.) and objective
probability p.
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Table 14.8 Comparison of data fit for two-stage model and classical theory

Mean absolute error

Source of Two-stage Classical Superior fit

Study N « uncertainty model theory  of 2SM
Fox & Tversky (1998)

NBA fans 50 0.83 Basketball 0.04 0.15 90%™**

Stanford students 82 0.80 Economic indicators 0.04 0.08 61%*
Fox & See (2002)

Duke basketball fans 51 0.63 Basketball 0.13 0.18 74%**

Brown students 29 0.87 Economic indicators 0.12 0.43 97 %**

*p < .05 *p < .01.

The first two columns identify the participant population and sample size. The third column lists the median value of
alpha (@) estimated for participants in each sample. The fourth column identifies the relevant source of uncertainty. The
fifth and sixth columns indicate the mean absolute error in fitting median data to the two-stage model and classical theory,
respectively. The final column lists the percentage of participants for whom the fit of the two-stage model was superior to
the fit of the classical theory; asterisks indicate the statistical significance of the percentage.

As anticipated, participants in the studies of Fox and Tversky (1998) and Fox and See
(2002) exhibited risk-averse utility functions under expected utility theory. Median estimates
of o for each of these studies, listed in the fourth column of Table 14.8, range from 0.63
to 0.87. Moreover, a significant majority of participants in these studies exhibited o < 1
(92 percent of NBA fans, 98 percent of Stanford University students, 94 percent of Duke
University basketball fans and 83 percent of Brown University students; p < .001 for all
samples). This confirms our earlier assertion that part (ii) of the partition inequality would
be expected to hold for most participants under expected utility theory.

Subjective probabilities were estimated as follows. For each target event A, we computed
(C4/160)* and divided these values by their sum to ensure additivity. Fits of both the two-
stage model and classical theory for the studies of Fox and Tversky (1998) and also Fox
and See (2002) are listed in Table 14.8. Based on the median certainty equivalents obtained
in the studies listed, the fit of the two-stage model was consistently better than the fit of the
classical theory. The mean absolute error for the two-stage model ranges from one-quarter to
one-half of the mean absolute error of expected utility theory. Moreover, when this analysis
was replicated for each participant, the two-stage model fit the data better than the classical
theory for a significant majority of participants in all four studies.

14.2.5 From Allais to the Two-Stage Model: Summary

The Allais (1953) paradox and fourfold pattern of risk attitudes (see Table 14.4) suggest that
consequences are not weighted by an additive probability measure. Instead, it seems that
consequences are weighted by an inverse-S shaped transformation that overweights small
probability consequences and underweights moderate to large probability consequences.
This weighting function reflects diminished sensitivity to events between the natural bound-
aries of impossibility and certainty, which is formally expressed as bounded subadditivity.
Numerous empirical studies have documented significant bounded subadditivity for chance
bets (risk) and a more pronounced degree of subadditivity for bets contingent on natural
events (uncertainty). This reduced sensitivity to uncertainty can be attributed to subadditivity
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of judged probability. According to the two-stage model (Tversky & Fox, 1995; Fox &
Tversky, 1998), decision makers first judge the probability of the target event (consistent
with support theory), and then weight that probability by an inverse-S shaped function (as
in prospect theory). This two-stage model is a radical departure from previous models be-
cause it allows decision weights to violate both the assumptions of additivity and description
invariance.

Evidence from a number of studies suggests that the two-stage model generally provides
a better fit to the data than does the classical model. Moreover, both prospect theory and the
two-stage model accommodate the Allais pattern in Problem 1, which reflects a preference
for certainty. We now turn to the Ellsberg paradox illustrated in Problem 2. As we observed
in Section 1, the Ellsberg pattern also violates the classical theory. However, the two-stage
model cannot accommodate the Ellsberg paradox, because the two-stage model attaches
the same weight to all events with probability p, regardless of their source. Hence, under
the two-stage model, a prize that obtains with probability 1/3 should be equally attractive,
regardless of whether the probability is clear (for example, option E in Problem 2) or vague
(option F). Similarly, a prize that obtains with probability 2/3 should be equally attractive,
regardless of whether the probability is clear (option H) or vague (option G). This prediction
is contradicted by modal preferences exhibited in the Ellsberg problem.

In order to develop a more satisfactory account of decision under uncertainty, we must
first gain a deeper understanding of the Ellsberg phenomenon: the empirical results that
have been documented and how they might be interpreted. At that point, we will be ready
to extend the two-stage model to accommodate this phenomenon.

14.3 THE PREFERENCE FOR KNOWLEDGE: FROM ELLSBERG
TO THE COMPARATIVE IGNORANCE HYPOTHESIS

Recall that the violation of the sure-thing principle observed in the Allais paradox (Problem
1) was explained by diminished sensitivity to changes in probability away from zero and
one. The violation observed in the Ellsberg paradox (Problem 2) resonates with a very
different intuition: people prefer to bet on known rather than unknown probabilities. This
interpretation is brought into sharper focus in a simpler, two-color problem that was also
advanced by Ellsberg (1961). Imagine two urns, both containing red and black balls. Urn I
contains 50 red balls and 50 black balls, whereas Urn II contains 100 red and black balls
in an unknown proportion. Suppose that your task is to guess a color, and then draw a ball
from one of the urns without looking. If you draw the color that you had guessed, you win
a prize, say, $10. Most people would rather bet on drawing a black ball from the known
probability urn than a black ball from the unknown probability urn, and most people would
likewise rather bet on drawing a red ball from the known probability urn than a red ball
from the unknown probability urn. This pattern violates expected utility theory because it
implies that the subjective probabilities for red and black are greater for the 50—50 urn than
for the unknown probability urn and therefore cannot sum to one for both urns.

The Ellsberg problem has garnered much attention because in real-world contexts de-
cision makers are seldom provided with precise probabilities of potential consequences.
Ellsberg (1961, 2001) argued that willingness to act under uncertainty is governed not only
by the perceived likelihood of target events and the attractiveness of potential consequences,
but also the ambiguity of the information on which the likelihood judgment is based (that
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is, the degree of uncertainty concerning probabilistic information). Ellsberg observed that
people generally find ambiguity aversive. More generally, we say that people prefer to bet
on sources of uncertainty for which events have known rather than unknown probabilities.?’

In this section, we begin with a review of the empirical study of ambiguity and source
preference. Second, we describe ways in which researchers can establish that a decision
maker prefers one source of uncertainty to another. Third, we discuss the psychological
interpretation of ambiguity aversion and source preference. Finally, we outline ways in
which source preference can be incorporated into the two-stage model that was developed
in the previous section.

14.3.1 The Empirical Study of Ambiguity Aversion

Although Ellsberg presented no experimental evidence, the preference to bet on known
rather than unknown probabilities has been demonstrated in numerous empirical studies
using variations of Ellsberg’s original problems (for a review of the literature on ambi-
guity aversion, see Camerer & Weber, 1992). In particular, a number of researchers have
provided participants with either precise information concerning probabilities or no infor-
mation concerning probabilities, as in the original Ellsberg problems. These studies provide
empirical support for the predicted pattern of choices in the Ellsberg two-color problem
(Raiffa, 1961; Becker & Brownson, 1964; Yates & Zukowski, 1976; Kahn & Sarin, 1988;
Curley & Yates, 1989; Eisenberger & Weber, 1995) and three-color problem (Slovic &
Tversky, 1974; MacCrimmon & Larsson, 1979).

Numerous studies have extended the exploration of ambiguity aversion by examining the
effect of increasing the degree of second-order uncertainty (that is, uncertainty about prob-
ability). Traditionally, researchers have relied on four different methods for manipulating
what they interpret to be “ambiguity”. First, some experimenters have varied the width of a
range of possible probabilities. For example, participants might be asked to price gambles
with probabilities of (a) .5, (b) somewhere between .4 and .6, or (c) somewhere between
.3 and .7 (Becker & Brownson, 1964; Curley & Yates, 1985, 1989; Kahn & Sarin, 1988).
Second, some researchers have endowed participants with a probability and a qualitative de-
gree of second-order uncertainty (Einhorn & Hogarth, 1986; Kahn & Sarin, 1988; Hogarth,
1989; Hogarth & Kunreuther, 1989; Hogarth & Einhorn, 1990; Kunreuther et al., 1995).
For example, Kunreuther et al. (1995) manipulate ambiguity in the context of underwriter
decision making by telling participants either that “all experts agree that the probability
of a loss is [p]” or that the experts’ best estimate of the probability of a loss is [p], but
“there is wide disagreement about this estimate and a high degree of uncertainty among
experts” (p. 11). Third, some researchers have provided participants with small and large
random samples of information with identical proportions (Chipman, 1960; Beach & Wise,
1969; Gigliotti & Sopher, 1996). For instance, Chipman (1960) had participants choose
between betting on a box with a known proportion of 100 match stems and heads versus

20 Tversky and Wakker (1995, p. 1270) define sources of uncertainty as families of events that are assumed to be closed under
union and complementation (that is, if events A; and A, are members of source A, then so are A} U Ay, S—A;, and S—A;).
This assumption is satisfactory with one salient exception: in the Ellsberg three-color example (Problem 2), we might interpret
known probability events {red, white U blue} as one source of uncertainty and unknown probability events { white, blue, red U
white, red U blue} as a second source of uncertainty. Hence, for our purposes, it is the fundamental character of the information
on which judgment is based that defines a source.
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a box with an unknown proportion of 100 stems and heads from which 10 items had been
sampled (yielding a matched proportion of stems and heads). Finally, some researchers
have manipulated ambiguity by providing participants with a game of chance entailing a
multistage lottery in which the outcome probability is determined by a first-stage drawing
(Yates & Zukowski, 1976; Larson, 1980; Bowen & Qui, 1992). For instance, in a study by
Larson (1980), the proportion of winning poker chips in a container was to be determined by
a number written on a card to be randomly drawn from a deck with 20 cards. Pairs of decks
were constructed with fixed means and normal distributions surrounding those means; half
the decks had a relatively large variance, and half had a relatively small variance.

Studies using the methods discussed above seem to provide broad empirical support for
the notion that the attractiveness of a prospect generally decreases as second-order uncer-
tainty increases. Many of these studies have also claimed to find “ambiguity seeking” for
low probability gains. However, an important caveat is in order when evaluating the results
of any study using one of these methods for manipulating ambiguity: they do not necessar-
ily control for variations in subjective probability. Heath and Tversky (1991; see especially
Table 4, p. 24) provide evidence that subjective probabilities associated with higher variance
or less reliable estimates of p may be less extreme (that is, closer to .5) than those associated
with lower variance or more reliable estimates of p. This pattern is also consistent with a
model in which people anchor on an “ignorance prior” probability of one-half, and then
adjust according to information provided them, with greater adjustment in response to more
precise probabilistic information (cf. Fox & Rottenstreich, 2003). Hence, when participants
learn that the best estimate of probability is .1 but “there is wide disagreement about [the]
estimate and a high degree of uncertainty among experts”, they may adopt a posterior prob-
ability that is higher than participants who learn that the best estimate is .1 and “all experts
agree” (cf. Hogarth & Kunreuther, 1989). Such a pattern would mimic “ambiguity seeking”
for low probability gains, but, in fact, it merely reflects a variation in subjective probability.
In sum, although the studies using the foregoing methods (range, endowment, sampling
and games of chance) make a persuasive case for ambiguity aversion in situations where
there are clear and vague probabilities of .5, the interpretation of ambiguity seeking for low-
probability gains should be regarded with some skepticism. In order to establish ambiguity
aversion (or seeking), one must be careful to control for unintended variations in belief that
may be introduced by the manipulation of ambiguity. Before turning to a discussion of how
one might interpret these empirical observations, we must first address the question of how
to distinguish ambiguity aversion—or more generally, the preference to bet on one source
of uncertainty over another—from an account that can be attributed to differences in belief.

14.3.2 Establishing Source Preference

Two methods for establishing source preference can be defended, which we will call (1)
probability matching and (2) complementary bets. Although we use games of chance (such
as balls drawn from an urn) to illustrate these methods, the two methods allow us to extend
the study of ambiguity to the domain of natural events, such as the future outcome of an
election or future close of the stock market.

The probability matching method can be formalized as follows. Let A and B be two
different sources of uncertainty. For instance, source A might be the color of a ball drawn
from an urn containing 50 red and 50 black balls, whereas source B might be the color
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of a ball drawn from an urn containing 100 red and black balls in unknown proportion. A
decision maker is said to prefer source A to source B if for any event A in A and B in B,
P(A) = P(B) implies W(A) > W(B) or equivalently, P(A) = P(B) implies C(x, A) > C(x, B)
for all x > 0. Thus, a person who says event A and event B are equally likely, but strictly
prefers to bet on A, exhibits a preference for source A over source B. For instance, suppose
a person says the probability of “black from the 50—50 urn” is .5 and the probability of
“black from the unknown probability urn” is also .5. If this person prefers betting on black
from the known probability urn to black from the unknown probability urn, then she has
exhibited ambiguity aversion that cannot be readily attributed to differences in belief.

One could potentially object to the probability matching method on the grounds that it
relies on an expression of judged probability rather than a measure of belief that is inferred
from preferences. A second method for establishing source preference does not rely on
judged probability. A decision maker is said to prefer source A to source B if for any event
Ain A and B in B, W(A) = W(B) implies W(S—A) > W(S— B), or equivalently, C(x, A) =
C(x, B) implies C(x, S—A) > C(x, S—B) for all x > 0. Thus, a person who would rather
bet on event A (for example, drawing a black ball from the 50—50 urn) than on event B
(for example, drawing a black ball from the unknown probability urn) and would rather bet
against A (that is, drawing a red ball from the 50-50 urn) than against B (that is, drawing a
red ball from the unknown probability urn) exhibits source preference that cannot be readily
attributed to differences in belief.?!

14.3.3 Interpreting Ambiguity Aversion

Most of the aforementioned empirical studies of ambiguity aversion have manipulated
ambiguity through vagueness of probabilities. Indeed, Ellsberg (1961) himself proposed to
model ambiguity aversion in terms of probability vagueness (that is, the range of possible
probabilities), and most models of ambiguity that followed Ellsberg have parameterized
features of a second-order probability distribution (for a review, see Camerer & Weber,
1992, pp. 343-347). However, Ellsberg originally characterized ambiguity aversion not as
vagueness aversion per se, but rather as reluctance to bet in situations where the decision
maker perceives that he lacks adequate information or expertise:

An individual . . . can always assign relative likelihoods to the states of nature. But how
does he act in the presence of uncertainty? The answer to that may depend on another
judgment, about the reliability, credibility, or adequacy of his information (including his
relevant experience, advice and intuition) as a whole. (Ellsberg, 1961, p. 659)

In recent years, many behavioral researchers have returned to the original interpretation of
ambiguity aversion as driven by the decision maker’s confidence in his or her knowledge,
skill or information (e.g., Frisch & Baron, 1988; Heath & Tversky, 1991). That is, ambiguity
aversion might be attributed to reluctance to bet in situations where the decision maker feels
relatively ignorant.

2l This pattern could be attributed to differences in belief if the sum of probabilities of complementary events is lower for the
less familiar source of uncertainty. Recall that support theory (Tversky & Koehler, 1994; Rottenstreich & Tversky, 1997) holds
that judged probabilities of complementary events generally sum to one. Numerous studies provide evidence supporting this
prediction (for areview of evidence, see Tversky & Koehler, 1994; Table 14.5 of this chapter). For counterexamples, see Brenner
and Rottenstreich (1999); Macchi, Osherson and Krantz (1999) and Idson et al. (2001).



BELIEF AND PREFERENCE IN DECISION UNDER UNCERTAINTY 301

Vagueness Aversion Versus Ignorance Aversion

Under most circumstances, the ignorance versus vagueness conceptions are confounded:
when a decision maker feels less knowledgeable, her judged probabilities are less precise.
In order to tease apart these two accounts, we must find a circumstance in which vagueness
aversion and ignorance aversion imply different patterns of choice. Heath and Tversky
(1991) conducted a series of experiments comparing people’s willingness to bet on their
uncertain beliefs to their willingness to bet on chance events. Contrary to the vagueness-
aversion hypothesis, Heath and Tversky found that people prefer to bet on their vague beliefs
in situations where they feel especially knowledgeable or competent—though they prefer to
bet on chance when they do not feel especially knowledgeable or competent. For instance, in
one study, participants were asked to order their preferences among bets contingent on three
sources of uncertainty: chance events, the winner of various professional football games
and the winner of various states in the 1988 presidential election. Participants who rated
their knowledge of football to be high and their knowledge of politics to be low preferred
betting on football games to chance events that they considered equally probable. However,
these participants preferred betting on chance events to political events that they considered
equally probable. Analogously, participants who rated their knowledge of football to be low
and their knowledge of politics to be high favored bets on politics to chance and chance to
football.

The foregoing demonstration provides evidence for the ignorance-aversion hypothesis
and casts doubt on the vagueness-aversion hypothesis. This demonstration relies on the
probability matching method described in Section 14.3.2. In other studies using the com-
plementary bets method, Heath and Tversky (1991) found that participants were willing
to pay more to bet both for and against familiar events (for example, “more than 85 per-
cent of undergraduates at [your university] receive on-campus housing”) than for or against
matched events that were less familiar (for example, “more than 70 percent of undergrad-
uates at [a less familiar university] receive on-campus housing”). The preference to bet on
more familiar events has since been replicated by a number of researchers using both the
probability matching method (Taylor, 1995; Taylor & Kahn, 1997) and the complementary
bets method (Keppe & Weber, 1995; Tversky & Fox, 1995).

The perspective we are advancing is that the ambiguity-aversion phenomenon is driven by
the decision maker’s perception of her level of knowledge concerning the target event, rather
than by features of the second-order probability distribution. Heath and Tversky (1991)
provided support for this interpretation by identifying situations where decision makers
preferred to bet on their vague assessments of familiar events rather than bet on chance events
with matched probability. We are not arguing that perceptions of one’s own competence
influence probability vagueness or that vagueness influences perceived competence. Rather,
characteristics of a source of uncertainty influence both the precision with which likelihood
can be assessed by the decision maker and the decision maker’s subjective perception of
her own competence judging likelihood. However, it is the perception of competence that
drives willingness to act under uncertainty. Indeed, Heath and Tversky (1991) found that
two-thirds of participants preferred to bet on their guess of whether a randomly picked stock
would go up or down the next day rather than bet on their guess of whether a randomly
picked stock had gone up or down the previous day. Clearly, the vagueness of one’s judgment
is unlikely to be influenced by whether the stock is picked from yesterday’s or tomorrow’s



302 THINKING: PSYCHOLOGICAL PERSPECTIVES

paper (if anything, participants could have more precise knowledge of yesterday’s stock
movement). However, when betting on yesterday’s close, participants may feel relatively
ignorant because they can already be wrong at the time of “postdiction” (see also Brun &
Teigen, 1990).

The Comparative Ignorance Hypothesis

The ignorance-aversion hypothesis asserts that source preference is driven by the decision
maker’s subjective appraisal of his or her knowledge concerning target events rather than
some second-order measure of probability vagueness. Fox and Tversky (1995) extended
this account by asking what conditions produce ignorance aversion. They conjectured that
a decision maker’s confidence betting on a target event is enhanced (diminished) when he
contrasts his knowledge of the event with his inferior (superior) knowledge about another
event, or when he compares himself with less (more) knowledgeable individuals. According
to the “comparative ignorance hypothesis”’, ambiguity aversion is driven by a comparison
with more familiar sources of uncertainty or more knowledgeable people and is diminished
in the absence of such a comparison. Three nuances of this account are worth emphasizing:
(1) source preference increases with the salience of contrasting states of knowledge; (2)
source preference is relative rather than absolute; (3) source preference is a function of
decision makers’ appraisal of their relative knowledge rather than their information.

The Salience of Contrasting States of Knowledge

Virtually every empirical study of ambiguity aversion reported before Fox and Tversky
(1995) relied on a within-subject design in which all participants evaluated multiple sources
of uncertainty (for example, in which each participant priced bets drawn from both clear
and vague probability urns). In a series of experiments, Fox and Tversky (1995) docu-
mented pronounced ambiguity aversion in comparative contexts in which each participant
evaluated lotteries with both clear and vague probabilities, but they found the effect was
greatly diminished—or disappeared entirely—in noncomparative contexts in which differ-
ent groups of participants evaluated the lotteries in isolation. For instance, participants in
a comparative condition said they were willing to pay $24.34, on average, for a bet that
offered $100 if they correctly guessed the color drawn from an urn containing 50 red balls
and 50 black balls, but they would pay only $14.85, on average, for a bet that offered $100
if they correctly guessed the color drawn from an urn containing 100 red and black balls
in an unknown proportion. In contrast, participants who priced the 50-50 bet in isolation
were willing to pay $17.95, on average, whereas participants who priced the unknown
probability bet in isolation were willing to pay $18.42, on average. Hence, the Ellsberg
result seemed to disappear when the experiment was run as a between-subject design rather
than a within-subject design. A similar pattern was observed in a follow-up study in which
participants evaluated prospects contingent on the future temperature in San Francisco (a
familiar city) and/or Istanbul (an unfamiliar city). Chow and Sarin (2001) replicated the
finding that source preference greatly diminishes in noncomparative contexts, though in
some of their studies it did not disappear entirely. Further evidence from market studies
has shown that the pronounced difference in prices for clear versus vague bets, observed
when both bets are traded together, diminishes or disappears when these bets are traded in
separate markets (Sarin & Weber, 1993).
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The comparative ignorance hypothesis asserts that source preference is driven by the
salience of contrasting states of knowledge. It applies not only to the contrast in a decision
maker’s knowledge of two different sources of uncertainty but also to the contrast between
a decision maker’s knowledge and that of other people. Fox and Tversky (1995) showed
that participants who were told that more knowledgeable people would be making the same
choice were much less likely to bet on their prediction than participants who were not
told about such experts. For instance, in one study, psychology undergraduates were asked
whether they thought that a particular stock would close higher in its next day of trading, and
then asked whether they would prefer to receive $50 for sure or $150 if their prediction was
correct. In this case, most favored the uncertain prospect. However, when a second group
of participants was told that the survey was also being presented to economics graduate
students and professional stock analysts, most favored the sure payment. In a similar vein,
Chow and Sarin (1999) found that the preference for known over unknown probabilities is
amplified when participants pricing a single bet (for example, a draw from a 50-50 urn)
are made aware of the fact that another participant or group of participants is evaluating a
different bet that offers a contrasting degree of information about probabilities (for example,
a draw from an unknown probability urn).

Relative Versus Absolute Knowledge

Fox and Tversky (1995) emphasized that the distinction between comparative and non-
comparative assessment refers to the state of mind of the decision maker rather than the
experimental context. The studies cited above facilitated such comparisons by juxtapos-
ing a known probability or familiar prospect with an unknown probability or unfamiliar
prospect, or by explicitly mentioning other people who were more (or less) knowledgeable.
More recently, Fox and Weber (2002) have shown that the comparative state of mind that
drives source preference can be manipulated without resorting to this “joint—separate” eval-
uation paradigm. For instance, participants in one study were less willing to bet on their
prediction of the outcome of the upcoming Russian election (a modestly familiar event)
when they had been previously asked a question concerning the upcoming US election
(a more familiar event) than when they had been previously asked a question concerning
the upcoming Dominican Republic election (a less familiar event). This demonstration also
provides evidence that when a state of comparative ignorance is induced (by reminding
people of alternative states of knowledge), willingness to act is governed by the decision
maker’s relative knowledge judging the target event rather than some measure of absolute
knowledge.?

Knowledge Versus Information

Fox and Weber (2002) also demonstrated that comparisons can be facilitated even in a deci-
sion context that is not explicitly comparative. In particular, when people are provided with
information they do not know how to use, this may remind them of their ignorance relative
to experts who do know how to use that information. For instance, in one study, psychology
students were less willing to bet on their assessment of the inflation rate in the Netherlands
if they had been provided information concerning the country’s gross domestic product

22 For a demonstration in the context of strategic uncertainty, see also Fox and Weber (2002), study 5.
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growth, unemployment rate and prevailing interest rate than if they had been provided no
such information. This demonstration also suggests that comparative ignorance effects are
governed by the decision maker’s perception of her relative knowledge concerning the target
event rather than the absolute amount of relevant information that she has available.

14.3.4 Incorporating Source Preference into the Two-Stage Model

The comparative ignorance effect presents serious modeling challenges. In particular,
demonstrations using the joint—separate evaluation paradigm show that strict source pref-
erence sometimes disappears when prospects are evaluated separately, rather than jointly.
This violates the principle of procedure invariance, according to which strategically equiv-
alent elicitation procedures should produce the same preference ordering (Tversky, Sattath
& Slovic, 1988; see also Tversky, 1996). More troubling still is the problem that the com-
parative ignorance phenomenon is inherently subjective and context-dependent. To predict
source preference ex ante, one must somehow parameterize (1) the decision maker’s sense
of his or her relative knowledge regarding the events in question and (2) the salience of
alternative states of knowledge.

These caveats notwithstanding, it would certainly be valuable to incorporate source pref-
erence into the two-stage model. Recall that according to the two-stage model, a decision
maker first judges probabilities, consistent with support theory, and then transforms these
probabilities in a way that accords with his or her weighting of chance events. Hence, the
original specification of the two-stage model does not allow for source preference. Although
the model presented in Equation (5) may provide a reasonable first-order approximation of
people’s decision behavior under uncertainty, it is important to note that this specification
will fail when source preference is especially pronounced.

Fox and Tversky (1998) acknowledged this limitation and proposed that their model
could be extended to accommodate source preference while preserving the segregation of
belief (that is, judged probability) and preference (that is, decision weights). They suggested
generalizing Equation (5) by letting W(A) = F[P(A)], so that the transformation F of prob-
ability depends on the source of uncertainty. They assume that F, like the risky weighting
function, w, is a subadditive transformation of P (see Tversky & Fox, 1995; Tversky &
Wakker, 1995; Wakker, in press). One convenient parameterization may be defined by

W(A) = (w[P(A)]Y, €))

where 6 > 0 is inversely related to the attractiveness of the particular source of uncer-
tainty. A second approach is to vary a parameter of the probability weighting function that
increases weights throughout the unit interval. For instance, one could vary the param-
eter § of Prelec’s (1998) two-parameter weighting function, w(p) = exp(—34 (—In p)¥),
where § > 0 is inversely related to the attractiveness of the source. This latter scheme
has the advantage of manipulating “elevation” (that is, source preference) independently
of the degree of “curvature” (that is, source sensitivity). It also allows for the possibility
of differences in sensitivity to probabilities drawn from different sources of uncertainty
that can be modeled through changes in the parameter . Such a decrement in sensitiv-
ity was recently documented for an extremely unfamiliar domain by Kilka and Weber
(2001).
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An approach that allows for differences in curvature of probability weights may have a
second application. The two-stage model, like most normative and descriptive models of
decision under uncertainty, presumes that (weighted) beliefs and (the subjective value of)
consequences can be segregated into separate terms that are independent of one another.
Recently, the generality of even this basic principle has been called into question. Rotten-
streich and Hsee (2001) observed that the weighting function may exhibit greater curvature
for more “affect-rich” outcomes, such as the possibility of receiving an electrical shock
or a kiss from a favorite movie star, than for “affect-poor” outcomes, such as money. For
instance, these researchers report that their participants found an electric shock about as
unattractive as a penalty of $20. However, participants were willing to pay seven times as
much to avoid a 1 percent chance of an electric shock as they were to avoid a 1 percent
chance of losing $20. This phenomenon begs further study—in particular, a more tightly
circumscribed definition and independent measure of “affect richness” would be useful. In
any case, the phenomenon can easily be accommodated by the extended two-stage model
if we allow the curvature parameter of the probability weighting function to vary with the
degree of affect richness of the target outcome.

14.3.5 From Ellsberg to the Comparative Ignorance Hypothesis:
Summary

The Ellsberg paradox and similar demonstrations have established that willingness to act
under uncertainty depends not only on the degree of uncertainty but also on its source. The
empirical study of decision under uncertainty has suggested that the aversion to ambiguity
does not reflect a reluctance to bet on vaguer probabilities, but rather a reluctance to act
when the decision maker feels less knowledgeable. Moreover, it appears that the awareness
of relative ignorance occurs only to the extent that contrasting states of knowledge are
especially salient to the decision maker, an account known as the “comparative ignorance
hypothesis”. Source preference can be accommodated by the two-stage model through a
generalization that weights judged probabilities by a subadditive function F, the elevation
of which depends on the source of uncertainty.

14.4 SUMMING UP: A BEHAVIORAL PERSPECTIVE
ON DECISION UNDER UNCERTAINTY

The Allais and Ellsberg paradoxes present challenges to the classical theory of decision
under uncertainty that are so robust and so fundamental that they appear in most introduc-
tory texts of microeconomics (e.g., Kreps, 1990), decision analysis (e.g., von Winterfeldt &
Edwards, 1986) and behavioral decision theory (e.g., Baron, 2001). The implications of
these anomalies continue to preoccupy decision theorists to this day. Although modal pref-
erences in both problems violate the sure-thing principle, the violations seem to reflect a
distinct psychological rationale: the preference for certainty (Allais) versus the preference
for knowledge (Ellsberg). Nevertheless, both patterns can be accommodated by a nonlinear
weighting function that models source sensitivity through its degree of curvature and source
preference through its elevation.
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u(x)
value function
V(x, A)
0
P(A) | w[PA)] ! (w[P(A)])
1: judged 2: risky weighting 21/,: source
probability function preference

Figure 14.7 Visual depiction of the extended two-stage model, as parameterized in Equation
9). V(x, A = v(x)W(A) = v(x)(w[P(A)])?, where V(x, A) is the value of the prospect that pays
$x if event A obtains (and nothing otherwise), v(.) is the value function for monetary gains,
P(.) is judged probability, w(.) is the risky weighting function, and 6 is the source preference
parameter

The two-stage model bridges two of the most influential strains of research in behavioral
decision theory. It integrates the analysis of decision under risk and uncertainty articu-
lated in prospect theory (Kahneman & Tversky, 1979; Tversky & Kahneman, 1992) with
work on heuristics and biases in judgment under uncertainty (e.g., Kahneman, Slovic &
Tversky, 1982) that can be formalized through support theory (Tversky & Koehler, 1994;
Rottenstreich & Tversky, 1997). The resulting model extends prospect theory by teasing
apart the role of belief (that is, judged probability) and preference (that is, source sensitiv-
ity and source preference) in the weighting of events. It departs markedly from previous
models by allowing decisions to differ depending on the way in which target events are
described.

14.4.1 Value, Belief and Preference in Decision Under Uncertainty

We began this chapter with the observation that values and beliefs are key inputs in choice
under uncertainty. However, we have identified systematic deficiencies of the classical
approach in which values and beliefs are neatly segregated into utilities and subjective
probabilities. In particular, we have observed that the weight decision makers afford un-
certain events can be decomposed into judged probabilities that are weighted according to
an inverse-S shaped function, the curvature of which reflects the decision maker’s sensitiv-
ity to the particular source of uncertainty, and the elevation of which reflects the decision
maker’s preference to act on that source. A summary of our perspective on the role of
value, belief and preference in decision under uncertainty, according to the extended two-
stage model (as parameterized in Equation (9)), is presented in Table 14.9 and illustrated in
Figure 14.7.

First, willingness to act under uncertainty is influenced in this model by the subjective
value of the target outcome, v(x). This value function is characterized by reference depen-
dence: that is, it is a function of losses and gains relative to a reference point (usually, the
status quo) rather than absolute states of wealth as in expected utility theory. The function
is concave for gains, giving rise to some risk aversion for gains, just as in expected utility
theory (see Figure 14.1). However, the function is also convex for losses, giving rise to some
risk seeking for losses, contrary to expected utility theory (see Figure 14.2a). Finally, the
function is steeper for losses than for gains, giving rise to “loss aversion” that can appear
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Table 14.9 Summary of the role of value, belief and preference in decision under
uncertainty according to the extended two-stage model?

Function/
Parameter Interpretation

Characteristics

Empirical
implications

Key references

v() Value function

1) Reference dependence

2) Concave for gains;
convex for losses

3) Steeper for losses than

1) Framing effects
2) Risk seeking for
gains; risk aversion

for losses

3) Loss aversion

Kahneman & Tversky
(1984)

Tversky & Kahneman
(1986)

Kahneman, Knetsch &
Thaler (1990)

Tversky & Kahneman

gains (1991)
P() Judged 1) Subadditivity 1) P(A) < P(Ay) + P(A;) Tversky & Koehler
probability (1994)
2) Description-dependence 2) P (A) < P (A;VA)) Rottenstreich & Tversky
(1997)
w(.) Risky weighting 1) Bounded subadditivity 1) Fourfold pattern of Tversky &
function risk attitudes Fox (1995)
2) Subcertainty 2) More risk aversion Tversky & Wakker
than risk seeking (1995)
Wu & Gonzalez
(1996)
Prelec (1998)
Gonzalez & Wu
(1999)
0 Source Source preference varies Comparative Heath & Tversky
preference with salience and nature of Ignorance Effect (1991)
parameter contrasting states of Fox & Tversky (1995)

knowledge Fox & Weber (2002)

“Fox & Tversky (1998); see also Tversky & Kahneman (1992); Kahneman & Tversky (1979).

as risk aversion.?? For instance, most people would reject a bet that offered a .5 chance of
winning $100 and a .5 chance of losing $100, because a potential loss of $100 has a greater
psychological impact than a potential gain of the same amount. In fact, most people would
require a .5 chance of gaining at least $200 to compensate for a .5 chance of losing $100.
Second, willingness to act under uncertainty is influenced in this model by the perceived
likelihood that the target event will occur, which can be quantified as a judged proba-
bility, P(A). Judged probabilities are characterized by subadditivity: the probability of an
uncertain event is generally less than the sum of probabilities of constituent events. This
may contribute to violations of the partition inequality that mimic risk-seeking behavior.
Moreover, judged probabilities are description dependent: as the description of the target
event is unpacked into an explicit disjunction of constituent events, judged probability may
increase. This phenomenon gives rise, for example, to a greater willingness to pay for an

23 In fact, risk aversion over modest stakes for mixed (gain-loss) prospects cannot be explained by a concave utility function
because it implies an implausible degree of risk aversion over large stakes. See Rabin (2000).
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insurance policy that covers hospitalization due to “accident or disease” than a policy that
covers hospitalization for “any reason” (Johnson et al., 1993).

Third, willingness to act under uncertainty is influenced in this model by the risky weight-
ing function, w(.). The curvature of this weighting function provides an index of a person’s
diminishing sensitivity to changes in probability between the natural boundaries of zero
and one, and the elevation of this weighting function provides an index of a person’s overall
risk preference. The risky weighting function is generally characterized by bounded sub-
additivity: a probability p has more impact on decisions when added to zero or subtracted
from one than when added to or subtracted from an intermediate probability q.

This inverse-S shaped weighting function implies a fourfold pattern of risk attitudes:
people tend to be risk averse for gains and risk seeking for losses of moderate to high
probability (underweighting of moderate to high probabilities reinforces the risk attitudes
implied by the shape of the value function), but they tend to be risk seeking for gains and
risk averse for losses of low probability (overweighting of low probabilities reverses the
risk attitudes implied by the shape of the value function).

The risky weighting function is also generally characterized by subcertainty: w(p) +
w(1—p) < 1. Visually, subcertainty manifests itself as a weighting function that crosses the
identity line below .5, and weighting functions with lower elevation are associated with more
pronounced degrees of subcertainty. It is important to note that there are large individual
differences in both the curvature and elevation of measured weighting functions, so that
some people might exhibit pronounced bounded subadditivity and no subcertainty, some
might exhibit little subadditivity and pronounced subcertainty, and others might exhibit
both or neither (for a detailed investigation, see Gonzalez & Wu, 1999).

Finally, willingness to act under uncertainty is influenced in this model by the source
preference parameter, 6. Source preference reflects a person’s eagerness or reluctance to
act on one source of uncertainty (for example, invest in the domestic stock market) rather
than another (for example, invest in a foreign stock market). Decision makers prefer to act
in situations where they feel relatively knowledgeable or competent to situations in which
they feel relatively ignorant or incompetent, but only to the extent that comparative states
of knowledge are salient. We suspect that the original formulation of the two-stage model
is adequate in most environments, where a contrasting state of knowledge does not occur
to the decision maker. Indeed, the research reviewed in this chapter suggests that the per-
ception of comparative ignorance, when it does occur, is subjective, transitory and context-
dependent.

14.4.2 Judged Probability Versus Subjective Probability

In the classical model of decision under uncertainty, direct judgments of probability are
rejected in favor of a measure of belief that is inferred from choices between bets. This
approach yields an elegant axiomatic theory that allows for the simultaneous measurement
of utility and subjective probability. Unfortunately, the price of this parsimony is a set of
restrictions on subjective probability that are descriptively invalid. In particular, the data
reviewed in this chapter suggest that outcomes are weighted in a manner that violates both
the assumptions of additivity and description invariance. Perhaps it was the observation
of incoherent judged probabilities that led early theorists to reject direct expressions of
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belief in their development of a normative theory of choice. However, empirical studies
reviewed in this chapter demonstrate persuasively that judged probabilities are, in fact,
diagnostic of choices and therefore can be fruitfully incorporated into a descriptive model
of decision under uncertainty. Moreover, support theory provides a formal framework for
predicting departures from additivity and description invariance in judged probability. Thus,
the descriptive theory of decision making under uncertainty may be informed and facilitated
by a deeper understanding of judgment under uncertainty.?*

14.4.3 Concluding Comments

In this chapter, we have reviewed a descriptive account of decision making under uncertainty.
The picture that has emerged accommodates a wide range of empirical data that have been
collected in recent decades and explains several puzzles in the literature. The (extended)
two-stage model teases apart the role of value, belief and preference underlying willingness
to act under uncertainty. Of course, the story presented here is incomplete, and a great deal
of continuing research is called for. The present account accommodates the observation that
real-world decisions require people to judge probabilities for themselves, with some degree
of second-order uncertainty. However, we have confined most of the present discussion to
prospects involving a single positive outcome, such as a bet that pays a fixed prize if the
home team wins a sporting event (and nothing otherwise). Decisions in the real world often
involve a host of multiple potential outcomes, some of which may entail losses. Although the
cumulative version of prospect theory accommodates multiple uncertain outcomes entailing
both gains and losses, further research is needed to determine an appropriate decomposition
of decision weights into belief and preference terms in rank- and sign-dependent models
(for an early attempt, see Wu & Gonzalez, 1999b).

Another promising avenue for future research is to develop tools for helping decision
makers make more rational decisions. The present account suggests that several violations
of rational choice theory can be avoided if the decision maker merely calculates the expected
value of each option and is willing to bind her actions to the principle of expected value
maximization. This simple procedure will eliminate inconsistencies in: (1) risk preference
attributed to nonlinearity of the value function v; (2) risk preference attributed to nonlinear-
ity of the risky weighting function w; (3) source preference attributed to the comparative
ignorance effect and modeled by the parameter 6. However, the present account suggests
that a final source of departures from rational choice—those attributed to incoherence of
belief—are not so readily purged. The aforementioned study of options traders (Fox, Rogers
& Tversky, 1996) is especially relevant in this respect. Options traders in this sample did
indeed price chance prospects by their expected value, based on objective probabilities
provided by the experimenter. Likewise, these experts priced uncertain prospects by their
apparent expected value, based on probabilities they had judged for themselves. How-
ever, because these judged probabilities exhibited subadditivity, selling prices for uncertain
prospects were also subadditive. It appears that even experts whose careers depend on their
ability to make rational decisions under uncertainty have difficulty avoiding subadditivity in

24 Note that according to the two-stage model, applying the inverse risky weighting function to uncertain decision weights will
recover judged probabilities; that is, w™! (W(A)) = P(A), where w™! is the inverse of w (cf. Wakker, in press).
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their judgment and decision making. Because belief-based departures from rational choice
cannot be eliminated by a simple act of volition, future prescriptive work might seek a
better understanding of the psychological mechanisms underlying belief formation so that
appropriate corrective measures might be developed.
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